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Abstract. The involutive automorphisms of affine Kac—Moody superalgebras are computed from
Satake superdiagrams corresponding to these algebras. These are then used to furnish a general
treatment of the lwasawa decomposition of these algebras. In particular, we conSdér 1)
andB®D (1, 1) as representative examples for the purpose of illustration.

1. Introduction

The splendid success of the Kac—Moody [1, 2] algebras in providing a consistent and
comprehensive framework for the development of formal aspects of a variety of theories serves
as a motivating prelude to enhance the scope and range of applicability of these powerful
mathematical techniques by way of exploiting the elegance of the concept of supersymmetry.
It is, therefore, imperative to continue the scheme outlined in earlier investigations [3-5] for
the study of affine Kac—Moody algebras to its supersymmetric version. This paper makes
an attempt to study affine Kac—Moody superalgebras with special reference to the study of
involutive root automorphisms and lwasawa decompositions. The involutive automorphisms
are obtained by constructing Satake superdiagrams for the affine Kac—Moody superalgebras.
The procedure adopted here is essentially analogous to that of ordinary Lie algebras [5—7] and
Lie superalgebras [4,8-14] in general and affine Kac—-Moody algebras [3, 15, 16] in particular,
for which detailed and rather unambiguous prescriptions have already been outlined elsewhere.
The main ingredients necessary for the evaluation of the involutive automorphisms constitute
the root system and corresponding Dynkin diagrams from which to construct the Satake
diagrams along with their supersymmetric versions. The root automorphisms for the affine
Kac—Moody superalgebras are computed, in precisely the same manner as for the affine Kac—
Moody and Lie superalgebras, with the help of the corresponding Satake superdiagrams for
these superalgebras. These involutive automorphisms in turn provide a consistent framework
to facilitate the Iwasawa decomposition [17] of Kac—Moody superalgebras. While the explicit
individual calculations of the entire proliferation of these algebras constitute a daunting task, we
shall restrict ourselves to the consideration of two representative examples, néfhedy1)
and BV (1, 1), to bring out the underlying notions in a unique manner. This choice of the
untwisted versions is, however, dictated by reasons of mathematical simplicity.

The plan of the paper is as follows. Section 2 gives a brief outline of the essential steps
for the construction of Satake superdiagrams from the Dynkin diagrams of affine untwisted
Kac—Moody superalgebras and lwasawa decomposition of these algebras. All possible Satake

T Present address: Department of Physics, V Deb College, Jeypore-764001, Orissa, India.

0305-4470/00/132569+09$30.00 © 2000 IOP Publishing Ltd 2569



2570 K C Pati and D Parashar

superdiagrams foA® (0, 1) and B® (1, 1) along with their root automorphisms have been
computed and their Iwasawa decomposition carried out in detail in section 3. These are listed in
tables 1 and 2, respectively. The structure of the inner automorphism required for the lwasawa
decomposition of affine Kac—Moody superalgebras is modified keeping in mind that both the
rootsa +nd and—a +nd, n € Z* are positive roots in contrast to the fact that the positive
root of the associated Lie superalgebra is anlyThe modified inner automorphism and its
properties along with the necessary mathematical formulation for calculating the elements of
the nilpotent subalgebrahave been discussed in detail in the appendix. Finally, a discussion
and concluding remarks form the contents of section 4.

2. Satake superdiagrams and Iwasawa decomposition of affine Kac—Moody
superalgebras

We begin this section by taking a look at the untwisted version of the affine Kac—Moody
superalgebras and the construction of Satake superdiagrams.

The automorphisms of a simple Lie superalgebhave been worked out in detail [3,8—14]
and some of these results can be summarized as follows. Since any automorphism of a simple
Lie superalgebra must respect grading, it will act on the reductive bosoniggarit the
Lie superalgebr& as an automorphism of A(p). Explicitly, an even (resp. odd) root is
transformed by an automorphism into an even (resp. odd) root, otherwise grading will cease
to be respected. The same argument can be extended to the affine Kac—Moody superalgebras,
and construction of Satake superdiagrams from Dynkin diagrams for affine superalgebras is
achieved with the help of the following prescriptions.

Let R be a root system of affine Kac—Moody superalgebra. d&oe R, leta =
(=Dla — o(a), where|a| is the degree ane («) is the image of the rook under the
automorphisnu. Let us introduceR_ = {a|@ # 0, € R} andRy = {« € Rla = 0}. If
B_ (resp.B) denotes the basis &_ (resp.R) and By a basis ofRg thenBy = B N Ry. If
B_ = B\ By = {a;} and By = {;}, then it can be shown that [3]

—0 (o) = iy + (=D " mapy (2.1)
1

wherer is the involutive permutation of0, 1, 2, ..., r}, and (—=1)%!y;; are non-negative
integers. We should note tha(g;) = (—1)'#!8, anda + o () ¢ R Yo € R. We can now
associateB with its Satake superdiagrams. In the Dynkin diagram pfve denote the roat;
by the usual white, grey and black dots, and the rgpbg black dots. We should note that this
black dot is different from the black dot associated with a nondegenerate odd root such as in
B(0, n) forinstance. Ifr (i) = k, then it will be indicated by a double-headed arrew->. We
avoid blackening of grey dots, to avoid the uniqueness of the Satake diagram being lost. The
involutive automorphisms of these algebras can be determined from their respective Satake
superdiagrams. The classification of such involutive automorphisms has been discussed by
Levestein [15] and Cornwell [16] for affine Kac—Moody algebras. However, we do not go into
these details here, since such a classification is not required for the purposes of our calculation.
As an illustration, we restrict ourselves to the consideration of two examp!&s0, 1) and
B1(1, 1), to highlight the salient features of the scheme.

The Iwasawa decomposition of an affine Kac—-Moody algelisobtained by combining

the Cartan decomposition and the root space decompositigntfie Cartan decomposition

corresponding tg is given by

G=kap (2.2)
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Table 1. Satake superdiagrams and involutive automorphismsf0, 1).

Satake superdiagrams 4f9(0,1)  Involutive root automorphisms

o)

0] —o(ag) = ag
—o(a1) = a1
—o(a2) = a2

20)

(if) —o(ap) =1
—o(a1) = ao
—o(a2) = a2

Oy a;

20

(iif) —o(ap) =1 taz
—o(a1) =ap+az
o(az) = a2

whereg is a maximal compact subalgebragtiefined such that € k iff ox = x andpis a
subspace of such thatx € p iff ox = —x. Now applying the root space decomposition of

P we obtain

G=k®dadn (2.3)

whereg is a maximal Abelian subalgebra gfandn is a nilpotent subalgebra ¢f. The

details of the method for direct determination of the lwasawa decomposition are elaborated
elsewhere [3,4,17]. The involutive automorphisms required for this purpose can be determined
from the Satake superdiagrams of affine Kac—Moody superalgebras.

3.1. Satake superdiagrams and lwasawa decompositiai®of, 1)

The Cartan matrix oA @ (0, 1) is

0O -1 1
c:(—l 0 1).
1 1 -2

The three simple roots of® (0, 1) areag, a1 andos, wherewg = § — (a1 +a2). The possible
Satake superdiagrams af? (0, 1) along with their root automorphisms are represented in
table 1.

Let us now consider the involutive automorphismAs? (0, 1) determined by any one of
the Satake superdiagrams, say superdiagram (iii) of table 1. The simple root automorphisms
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are given by
—o(ap) = a1 taz
—o (o) =ag+az (3.1)
o (o) = az.

In terms of rootsy, of associated Lie superalgeb4&0, 1) and root these can be rewritten as

—0o(1) = —a1+4
—0(8—a1—ap) =g tan 3.2
o(a2) = a.

The positive roots oA (0, 1) are given by
A = {ag, a1, ap, Faq +nd, fao +ns, £(ag +an) +né, ns, where n e Z*}. (3.3)

We can apply the simple root automorphism to deduce the automorphisms of other roots and
we see that

expa(h) = +1 for o =g, a1, ay +né, oo +nog, — (01 + ) +né (3.4)
expa(h) = -1 for o = —ay+nés, —8>+né, (g +ap) +né. (3.5)
For A (0, 1) x andp are given by

k = {ihy for o = ag, a1, az and(e, + e_q), i(e, — e_y) for a given by equation (3.4) (3.6)
P = {i(eq +e_y), (ex — e_y) fOr a given by equation (3.5) (3.7)
We now select a maximal Abelian subalgelrin the vector space. It is clear thata is
one-dimensional and may be chosen to have a basis element

Hi=i(eq +e_y) for «=—ax+mé,melZ. (3.8)
So, we haveR, = {—ap + méd} andRy, is empty.m is two-dimensional and its basis elements
are given by

H]//_ = _(ha2+(m+n)8 - 2ha1+(m+n)8) (39)

Hy = —hgnins-
Note thatHy, H;, H, together with a scaling elemedtt such thatrg(d’) = 1 ande;(d") = 0,
fori =1,2,...,1, are the elements of the Cartan subalgataThe inner automorphism of
AN (0, 1) is given by the expression

V= V—a2+n5 = exp[adia—azﬂlé(e—azﬂlé - ea2+n8)}] (310)
where

T
A_qy+n§ = (311)

1"[8(arz, )] Y2
wheret is a complex variable.
Applying this to the Cartan subalgebis of AP (0, 1), we obtain

Ho = 2Y2h_ gyeimanys
Hy = —(hayt(menys — 2ha+men)s)
Hz = —hgnens
and
d = V_g,s(d). (3.12)
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With respect to this Cartan subalgebra, the set of positive roots is given by

AY = {ag, a1, —a2, a1 £ (m +n)8, —ap £ (m +n)8, —(aq +az) £ (m +n)s, —(m +n)s)
(3.13)

whereA} andA* are given as follows:

AT = {—(m +n)s} (3.14)
AI = {ap, a1, —02, a1 £ (m +n)s, —ap = (m +n)é, — (g + ) £ (m +n)é}. '

The elements of are determined by the structuvejzwea (herea € A). These are given

by
-1 1 1
V_az+n63_a1i(m+n)8 = —1 2 (SgnN—ctz,ot1+otz)€a1+a2+(n;t(m+n))5 + 1+—t2nea1i(m+”)5
[
V_al s €=zt min)s = ~ o5 Nyt —=(e — C_gy— )
— 12" a2 (m+n)$ axt(nt(m+n))d ap—(nt(m+n))é
i 2y 2 (3.15)

V. ptns€—(ar+az)£mn)s = m(Sganotg,7al)efa1+(n:|:(m+n))8

+—1 T 20 - (erra)Emms-

Now n can be calculated from, and its elements have the following structures:
i
_E(eaz*-(ni(mﬂl))é — €—_gpt(nt(min))s) T ﬁhaﬁ(mn)a

1
(ea1+(n:i:(m+n))8 - efa1+(n:i:(m+n))8) + m(sganaz,alﬂxz)

X (ea1+a2+(n:t(m+n))8 - efalfut2+(n:|:(m+n))5) (316)

1+

R (SONN gy, —ay) (Coyt(nt-(m+n))s — €—ar+(nt(m+n))s)

+m(ea1+a2:t(m+n)5 - ef(a1+ot2):i:(m+n)8)~

The required Iwasawa decomposition is then written as
AP0, ) =k®adn (3.17)

wherek, a andn are given by equations (3.6), (3.8) and (3.16), respectively.

3.2. Satake superdiagrams and lwasawa decompositi@iofL, 1)

The Cartan matrix oB® (1, 1) is

4 -2 0
c:(—Z 0 1)
0 1 -1

and the three simple roots 8f (1, 1) areayp, a1 anda,, whereag = 8 — (201 + 25). The
possible Satake superdiagramsBé? (1, 1) along with their root automorphisms can be read
from table 2.

As a second example, we consider the involutive automorphisBi’ofl, 1) determined
by the Satake superdiagrams, say superdiagram (ii) of table 2. The simple root automorphisms
are similarly given by

—o(ag) =g
—o (o) = a1+ 207 (3.18)

o(a2) = a.
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Table 2. Satake superdiagrams and involutive automorphisn& {1, 1).

Satake superdiagrams BfY (1, 1) Involutive root automorphisms
~. Pt .
oy Ok o (cp) = ao
o oy as o) =01
—o(a2) = a2
i ~ ot ~ _ —
U e———— N ——— ) o (o) = ao
ao (Xl GZ —(T(Oll) :al+2a2
o(a2) = a2

These automorphisms can be written as

—o(a1) = —ag + 22
—0 (8 — 201 — 2a0) = § — 201 — 202 (3.19)
o(a2) = a.

The positive roots oB® (1, 1) are
A = {ag, a1, a2, a1 +né, oo +nd, (a1 + o) +nd,
+(aq + 200) + 18, £(201 + 200) + 18, ns, wheren € Z*}. (3.20)

We can apply the simple root automorphisms to find the automorphisms of other roots such
that

expa(h) = +1 for o =as, as+né, +(ay + 200) +né (3.21)
expa(h) = -1 for o =ag, a1, a1 +ns, —ay +néd, £(a1 +ay) +nd,
+ 2oy + 2a0) + 18, né. (3.22)

For BY(1, 1) k andp are given by

k = {ihg for o = ag, a1, ap @and(e, + e_y), i(ey — e_y) for a given by equation (3.2])

(3.23)

P ={i(eq +e_y), (ex — e_y) fOr  given by equation (3.22) (3.24)
Now ¢ is one-dimensional and its basis element is chosen to be

Hi=i(eq +e_y) for o =1+ (3.25)

Here R, = {a1 + a2} and Ry, is again empty.m is two-dimensional and its basis elements
have the form
H{ = hy,
H, = —h;.
The elementdd), H; and H, together with a scaling elemeiit form the Cartan subalgebra
h'. Defining the inner automorphism &, ., and applying this to the Cartan subalgehfa
we obtain

(3.26)

Ho = =214, 1o,
Hi = h,

Hy = —h;

d = Viyray (d').

(3.27)
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With respect to this Cartan subalgebra, the positive roo®f1, 1) are given by

A = {—ag, a1, —ap, a1 £ nd, —ap £ né, (a1 +an) + né,

(a1 + 200) £ né, (201 + 203) + nd, —né}. (3.28)
The A* andAZ are then written as
At = {—ap, —ap £ 18, —né) (3.29)
AL = {—ag, a1, a1 £ 18, (ay + ap) £ nd, (a1 + 202) + né, (201 + 2005) + né}. (3.30)

The elements of are determined by the structur@giazea, wherea € A}. These are given
by

|
-1
Va1+azea1ﬂ:n6 = Eeal - E(SgnNal‘Faz,faz)ethz

-1 1 1
Va1+azea1ﬂ:n$ = Eealiné - E(SgnNalﬂxz,—az)e—azﬂ:né
1 i
VarrapClarraryns = 7 (€antar)tns = €—(ontaz)ns) — S/t @rvar)sns (3.31)
—i

1
-1
Vi, i +2ey)tns = E(SgnNalﬂxz,az)eaziné + 5 Ct2) +nd

i
-1
Va1+aze(2a1+2a2):tn§ = _Esgn(Na1+a2,a1+a2)e(a1+a2):l:n8 + Ee(2a1+2a2):l:n8'
The elements of can be obtained from which are given by the following expressions:
i

E(e(otlﬂxz):l:né — €_(artan)tns) — mh(aﬁaz)ﬂ:né
1 i
E(e()(l - g—al) + E(SgnNaﬁaz,az)(eaz - e—(xz)
1 i
E(eotliné - e—aliné‘) + E(SgnNa1+a2.—[x2)(e(x2in§ - e—azinb‘) (332)

|
E(e(a1+2a2):l:n8 — € (ay+200)tns — E(SgnNleﬂxz,ag)(eaz:tnB - e*l)tz:l:nts)

i
E(e(2a1+2u2):tn6 — € (2uy+2mp)+ns) — 5(SgnNa1+a2,a1+a2)(e(ot1+a2):l:m§ — €_(ar+az)+nd)-
The required lwasawa decomposition is now
BY1, ) =k®adn (3.33)

wherek, a andn are given by relations (3.23), (3.25) and (3.32), respectively.

4. Discussion

A critical examination of the conclusions arrived at above seems to be in order. It has
been demonstrated how the technique of Satake diagrams has proved useful in analysing
the various important aspects of the algebraic structures, including their supersymmetric
extensions. The lwasawa decomposition of the affine Kac—Moody superalgebras immediately
leads to the Langlands decomposition of these algebras, thereby facilitating the determination
of the parabolic subalgebras that are necessary for obtaining the corresponding induced
representations with the help of Schmidt construction. However, we note in passing that
in general there aré’2! classes of parabolic subalgebras, Withi| as the dimension ef. For

the two illustrative examples® (0, 1) andB™ (1, 1) considered here, we haye,| = 1 and
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there will, therefore, be at most two parabolic subalgebras, one being the minimal parabolic and
the other the algebra itself. For the sake of generality, it would be quite interesting to determine
the parabolic subalgebras in cases wherg > 1. Such studies for the affine Kac—Moody

superalgebras are currently in progress and will be reported in a subsequent communication.
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Appendix

The general formulation of inner automorphism appropriate for the case of Kac—Moody
algebras along with their supersymmetric extensions is defined as

V= V:ta+n8 = exp{ad[iaﬂ:a+n8(e:l:ot+n8 - e$a+n8)]} (Al)

where
4

8@ a2 (A.2)

Atq+ns =
Using the formula

[exp(@dA)]B = B +[A, B] + %[A, [A, B]]+---
and equation (A.1) we see that

Via+n§[i (eot+m6 - e—a+m6)] - i(e(x+m8 - e—a+m5)

V:ta+n8(eot+m5 - efa+m6) = &i <

1/2
hﬂt m+tn
(a, a)) s (A.3)

1/2
. (a, @)
Via+n§(|ha+mﬁ) = - 2 (eo(+(m+n)6 - e—a+(m+n)6)-
From these expressions we find
1 2 \12
Vs Camins = = (Castimims — € :i:+6):Fl hams (A.4)
+a+nsCat(m+n) 2 at(m+n) —ax(m+n) 2 (Ol, Ol) atm
[ 2 \Y? 1
V£l+ §€—ax(m+n)s = +35 ha:l:sz - _(eot:i:(m+n)8 - efazl:(m+n)8)' (AS)
@ 2 \(a,a) 2
For anyy which is not an&’ string root, we have
V:t_;-+m§eyiln§ = €ytms- (A6)

We now consider the case when théstring containingy has two members andas the first
member of the string. Then we have

1 1
-1
Vigins€ysms = <m> €ytns F <m) (SINNe,y )€y +atm+n)s (A7)
and whery is the second member of the string, the resulting expression is
_ 1 1
Vimmslytms = F (m) (SONNe,y—o)ey—atminys + <m> €ytms- (A.8)

In arriving at these relations we have been guided by the work of Cornwell [17], coupled with
the fact that the structure constants of affine Kac—Moody algebras depend only on the structure
constants of the associated Lie algebras. That is to say,

Na+m§,ﬂ+n6 == Na.ﬁ~ (Ag)
In a similar fashion, we can derive the structig'e, for all other cases.
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